Transplantation of activated nucleus pulposus cells after cryopreservation: efficacy study in a canine disc degeneration model.
نویسندگان
چکیده
Transplantation of activated nucleus pulposus (NP) cells obtained by coculturing NP cells and bone marrow mesenchymal stromal cells having cell-to-cell contact has been shown to be effective in animal models and, more recently, in human clinical trials. If the NP cells can be cryopreserved, then autologous cell transplantation could be offered to patients as and when required. In a previous study, we confirmed that activated NP cells can be obtained by coculturing with mesenchymal cells after cryopreservation. However, the in vivo effects of cell transplantation therapy using activated NP cells prepared from cryopreserved cells are not known. In this in vivo canine model, we compared indicators of disc degeneration in animals that received transplanted activated normal NP cells, transplanted cryopreserved NP cells, and no cell transplantation after induction of disc degeneration. The intervertebral disc height on radiographs and T2-weighted magnetic resonance imaging were significantly higher in both cell transplantation groups compared with the degenerated disc group. Macroscopic and histological findings demonstrated attenuated disc degeneration in the two transplanted groups. Intense staining of proteoglycan and collagen type II was seen in green fluorescent protein-labelled transplanted cells, which suggested that the cells had survived and were functioning after transplantation. No significant differences were observed between the two transplanted groups. Transplanted activated cryopreserved NP cells induced a similar attenuation of intervertebral disc degeneration as that of conventionally activated NP cells. These findings suggest that the use of cryopreserved cells specific to a patient's condition has potential in transplantation therapy.
منابع مشابه
Effect of Cryopreservation on Canine and Human Activated Nucleus Pulposus Cells: A Feasibility Study for Cell Therapy of the Intervertebral Disc
It has been shown that coculture of bone marrow-derived stromal cells (BMSCs) with intervertebral disc (IVD) nucleus pulposus (NP) cells significantly activates the biological characteristics of NP cells in animal models and in humans. We therefore predicted that activated NP cells would be a useful graft source for cellular transplantation therapy in the treatment of degenerative IVDs. However...
متن کاملIntervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year, prospective clinical study of its safety.
Degeneration of the lumbar intervertebral discs is irreversible, with no treatment currently available. Building upon experimental studies that demonstrated the importance of the nucleus pulposus (NP) in preserving disc structure, we demonstrated that reinsertion of NP cells slowed further disc degeneration and that direct cell-to-cell contact co-culture with mesenchymal stromal cells (MSCs) si...
متن کاملTransplantation of mesenchymal stem cells in a canine disc degeneration model.
Transplantation of mesenchymal stem cells (MSCs) is effective in decelerating disc degeneration in small animals; much remains unknown about this new therapy in larger animals or humans. Fas-ligand (FasL), which is only found in tissues with isolated immune privilege, is expressed in IVDs, particularly in the nucleus pulposus (NP). Maintaining the FasL level is important for IVD function. This ...
متن کاملGallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway
This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) an...
متن کاملDegenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 31 شماره
صفحات -
تاریخ انتشار 2016